The "fast clustering-tracking" algorithm in the Bayesian occupancy filter framework

نویسندگان

  • Kamel Mekhnacha
  • Yong Mao
  • David Raulo
  • Christian Laugier
چکیده

It has been shown that the dynamic environment around the mobile robot can be efficiently and robustly represented by the Bayesian occupancy filter (BOF) [1]. In the BOF framework, this environment is decomposed into a gridbased representation in which both the occupancy and the velocity distributions are estimated for each grid cell. In a such representation, concepts such as objects or tracks do not exist and the estimation is achieved at the cell level. However, the object-level representation is mandatory for applications needing high-level representations of obstacles and their motion. To achieve this, a natural approach is to perform clustering on the BOF output grid in order to extract objects. We present in this paper a novel clustering-tracking algorithm. The main idea is to use the prediction result of the tracking module as a form of feedback to the clustering module, which reduces drastically the complexity of the data association. Compared with the traditional joint probabilistic data association filter (JPDAF) approach, the proposed algorithm demands less computational costs, so as to be suitable for environments with large amount of dynamic objects. The experiment result on the real data shows the effectiveness of the algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust multi-target sensing/tracking in the Bayesian Occupancy Filter framework

We present the “Bayesian Occupancy Filter” (BOF) and the “Fast ClusteringTracking” algorithms as a framework for robust sensing and multi-target tracking using multiple sensors. Perceiving of the surrounding physical environment reliably is a major demanding in smart systems requiring a high level of safety such as car driving assistant, autonomous robots, and surveillance. The dynamic environm...

متن کامل

Bayesian occupancy filter based “Fast Clustering-Tracking” algorithm

It has been shown that the dynamic environment around the mobile robot can be efficiently and robustly represented by the Bayesian occupancy filter (BOF) [1]. In the BOF framework, the environment is decomposed into a gridbased representation in which both the occupancy and the velocity distributions are estimated for each grid cell. In such a representation, concepts such as objects or tracks ...

متن کامل

Fast classification of static and dynamic environment for Bayesian Occupancy Filter (BOF)

In this paper we present a fast motion detection technique based on laser data and odometry/imu information. This technique instead of performing a complete SLAM (Simultaneous Localization and Mapping) solution, is based on transferring occupancy information between two consecutive data grids. We plan to use the output of this work for Bayesian Occupancy Filter (BOF) framework to reduce process...

متن کامل

An Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm

In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...

متن کامل

Clutter Removal in Sonar Image Target Tracking Using PHD Filter

In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008